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ABSTRACT

The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range

model forecast system running operationally at NOAA/National Centers for Environmental Prediction

(NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper docu-

ments the application of the GSI three-dimensional hybrid ensemble–variational assimilation option to the

RAP high-resolution, hourly cycling system and shows the skill improvements of 1–12-h forecasts of upper-air

wind, moisture, and temperature over the purely three-dimensional variational analysis system. Use of

perturbation data from an independent global ensemble, the Global Data Assimilation System (GDAS), is

demonstrated to be very effective for the regional RAP hybrid assimilation. In this paper, application of the

GSI-hybrid assimilation for the RAP is explained. Results from sensitivity experiments are shown to define

configurations for the operational RAP version 2, the ratio of static and ensemble background error co-

variance, and vertical and horizontal localization scales for the operational RAP version 3. Finally, a 1-week

RAP experiment from a summer period was performed using a global ensemble from a winter period, sug-

gesting that a significant component of its multivariate covariance structure from the ensemble is independent

of time matching between analysis time and ensemble valid time.

1. Introduction

The Rapid Refresh (RAP; Benjamin et al. 2016,

hereafter B16) was developed as an hourly updated data

assimilation–model forecast cycling system to meet

the growing requirements for increased accuracy in short-

range weather guidance for aviation, energy, severe

weather, hydrology, agriculture, and other sectors. The

RAP replaced the RapidUpdate Cycle (RUC; Benjamin

et al. 2004a,b) within the operational model suite at

NOAA’s National Centers for Environmental Prediction

(NCEP) in May 2012. A second version of the RAP with

further advances in data assimilation and model design

was implemented at NOAA/NCEP in February 2014,

and a third version was implemented inAugust 2016. B16

summarizes the RAP and its key techniques in both data

assimilation and model forecasting for hourly cycling.

This paper focuses on the RAP forecast improve-

ments gained by applying three-dimensional ensemble–

variational hybrid analysis in the Gridpoint Statistical

Interpolation analysis system (GSI) with the ensemble
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ensembleKalman filter (EnKF) data assimilation system.

For numericalweather prediction (NWP) systemswith rapid

update cycling like RAP and RUC with emphasis on short-

range forecasts, thedata assimilation component is especially

important. One of the main improvements of the RAP

system compared to the RUC is the use of GSI for the data

assimilation component. GSI was developed at NCEP as a

unified global–regional variational data analysis system (Wu

et al. 2002). GSI was made available as a community data

assimilation system by the Developmental Testbed Center

(Shao et al. 2016). It serves both operational and research

community users with extended options for variational or

ensemble–variational hybrid analysis or as an observation

operator for an EnKF analysis (Wu et al. 2002; Whitaker

et al. 2008; Kleist et al. 2009). The use of GSI allows RAP

development to take advantage of broad GSI development

efforts from both the operational and research community.

In return, new data assimilation enhancements developed

for the RAP are shared back via the GSI repository as op-

tions for other operational and research applications.

The background error covariance (BEC) plays an

important role in three-dimensional variational data

assimilation. It is an important factor to define the

analysis increment from observation innovations and

the balance among different analysis variables, espe-

cially between mass and wind fields. The fixed (or static)

BEC used by GSI is constructed based on perturbations

generated with the National Meteorological Center

(NMC) method (Parrish and Derber 1992) via a col-

lection of model forecast error fields over a long period.

In recent years, a major development in theGSI is to use

ensemble-based perturbations to obtain flow-dependent

BECs (Wang et al. 2007) for the GSI variational analysis

using global ensemble forecasts (Wang 2010; Whitaker

et al. 2008) or regional ensemble forecasts. Application

of the variational-based solver using augmented control

vector to incorporate the ensemble information is re-

ferred to as ensemble–variational (EnVar) analysis in

Lorenc (2013) and as the GSI-hybrid EnVar or hybrid

analysis for the specific version in this paper.

Several hybrid data assimilation methods have been

proposed to combine the advantages of the ensemble

and the variational methods (Hamill and Snyder 2000;

Lorenc 2003; Buehner 2005;Wang et al. 2007). TheGSI-

hybrid analysis uses a combined covariance through a

variational-based control variable method (Lorenc 2003).

Both three-dimensional (3D) and four-dimensional

(4D) versions of hybrid EnVAR have been success-

fully developed and tested for global and regional GSI

applications by NCEP and its partner developers

(Wang et al. 2013; Kleist and Ide 2015a,b). Wang et al.

(2013) showed that the NCEP GFS using 3D EnVAR

hybrid assimilation produces more skillful deterministic

forecasts out to day 5 relative to those using 3DVAR.

Kleist and Ide (2015a) further demonstrated that using

the GSI 3D EnVar hybrid method made improvements

in the analysis and subsequent forecast for the NCEP/

GFS system in the context of observing system simula-

tion experiments (OSSEs). The test and evaluation of the

same 3D EnVar hybrid system applied for the North

American Mesoscale Forecast System (NAM) yielded

similar improvement as in the GFS system (Wu et al.

2017). The successful development and application of

the 3D EnVar in GFS and NAM encouraged the Earth

System Research Laboratory (ESRL) RAP develop-

ment group to apply this method in the RAP system.

The RAP is unique in that it is a 1-h assimilation cycle

with the WRF-ARW Model, while the GFS uses a

6-hourly cycle and the NAM has used a 3-hourly cycle.

This paper discusses the results from experiments on

application of the GSI 3D EnVar hybrid method to the

hourly updating RAP. Section 2 describes RAP cycling

workflow and configurations of GSI for theRAP. Section 3

introduces the configuration of GSI-hybrid assimilation for

RAP operation and the baseline test of the 3D hybrid

EnVar assimilation compared with that from the 3DVAR.

In section 4, the experiments on hybrid assimilation pa-

rameters are discussed. Section 5 investigates the sensitivity

of the assimilation skill to matching the valid time of the

ensemble BEC and the RAP analysis time. Last, a sum-

mary of current work with GSI-hybrid assimilation and the

future development for RAP are discussed in section 6.

2. RAP data assimilation

This section gives a brief summary on the GSI con-

figuration for RAP to provide context for the GSI-

hybrid tests. The details of the RAP model and analysis

configuration can be found in B16.

The RAP uses the WRF-ARW release version with

enhancements to the land surface model, planetary

boundary layer scheme, and convection and cloud-

microphysics parameterizations as described in B16.

The RAP uses a rotated latitude–longitude grid with

approximately 13-km horizontal grid spacing that covers

Alaska, the Caribbean Sea, and all of North America.

Themodel top is set at 10hPa with 50 vertical levels. The

lowest model computational level is located at about

8m above the ground (sigma 5 0.999). The RAP uses

boundary conditions fromGFS and runs hourly with new

18-h forecasts each hour. The GSI uses the RAP model

1-h forecast as the background and conducts the analysis

on a rotated latitude–longitude A grid and on model

vertical levels. GSI has the functionality to update dif-

ferent sets of model variables for use in different mod-

eling systems. The variables updated in the RAPGSI, as
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well as the static BEC and observation errors, are listed

and explained in B16.

The use of GSI for the RAP data assimilation allows

application of hybrid ensemble–variational assimilation

using an ensemble-based covariance component from

the independent GDAS/EnKF ensemble data assimila-

tion. GSI also allows inclusion of new observations not

previously incorporated into the RUC (details in B16).

All observations used in the GSI are in WMO standard

BUFR/PrepBUFR format. NCEP generates all hourly

BUFR/PrepBUFR files for the RAP with narrow data

cutoff time windows appropriate for a 1-h cycle, gener-

ally from 45min before analysis time to 15min after

analysis.

Each RAP data assimilation cycle has three analysis

components (Fig. 1). First, the GSI-hybrid EnVAR an-

alyzes the temperature, wind, moisture, and surface

pressure fields using conventional and radiance obser-

vations with radiance bias correction coefficients cycled

with each RAP cycle. Then, the GSI hydrometeor

analysis is run to improve the analysis of hydrometeors

(precipitating and nonprecipitating) and water vapor

consistency using surface cloud observations, satellite

cloud-top products, and radar reflectivity. Finally, when

the WRF Model is initialized, a diabatic digital filter is

applied to filter noise and during its forward integration,

3D temperature tendencies are specified from radar

reflectivity (and lightning) where available, resulting in

modification to 3D divergence to retain radar informa-

tion (Peckham et al. 2016; Weygandt and Benjamin

2007). A partial cycling is applied to the RAP as shown

in Fig. 2 and described in B16. It brings in GFS atmo-

spheric data every 12h and combines with fully cycled

previous RAP land surface data to start a parallel 6-h

spinup period for full RAP forecast cycles. The data

assimilation behavior within the RAP studied in this

paper is constrained by this partial cycling.

3. RAP GSI-hybrid configuration and baseline test

The first operational version of the RAP (version 1;

B16) used three-dimensional variational data assimila-

tion with static background error covariance (BEC).

RAP version 2 introduced the use of the GSI 3D

EnVAR hybrid analysis technique for hourly updating.

The initial hybrid configuration was based on experience

from other NCEP operational systems (GFS, NAM, and

HWRF). RAP version 2 uses a 50% contribution each

from both static and ensemble-based BEC for the

overall BEC, and the configuration of the RAP GSI-

hybrid application is listed in Table 1. The RAP system

relies on the GDAS EnKF 80-member ensemble fore-

cast [T254 resolution, ;55km and increased to T574

(semi Lagrangian), ;30 km after January 2015] for its

ensemble component of the BEC. This unique setup is

possible becauseGSI has the functionality tomap global

ensemble perturbations to any regional grid allowing

this dual-resolution hybrid analysis, which enables the

RAP to apply hybrid analysis without need for expen-

sive RAP-specific ensemble. The GDAS ensemble

during this study only runs 4 times per day (0000, 0600,

1200, and 1800 UTC), comprising a 9-h forecast with

3-hourly output at 3-, 6-, and 9-h duration. In real time,

the 9-hGDAS ensembles are available about 6h after the

valid synoptic time from which these ensembles were

initialized. Because of the GDAS ensemble latency and

FIG. 1. RAP data assimilation flowchart. HM Anx stands for hydrometeor analysis, which is the GSI

cloud/hydrometeor assimilation option used in RAP.
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hourly cycle data assimilation, the RAPGSI 3DEnVAR

hybrid assimilation must reuse the same set of GDAS

ensemble information for its six consecutive hourly cycles

(Fig. 1). In addition to the time availability, the grid

spacing of the GDAS ensemble forecast used in this ex-

periment is approximately 60km, while the RAP analysis

grid and ensemble grid is 13km for the experiments in

this section.

The GSI 3D EnVAR hybrid technique applied for

RAP version 2 (Table 1) is compared in this paper to the

use of a static BEC alone, for retrospective experiments

during 28 May–4 June 2012. Figure 3 shows 6-h forecast

root-mean-square error (RMSE) for upper-air winds,

relative humidity, and temperature against sounding

observations. The 3D EnVAR hybrid retrospective

RAP experiment (blue line) outperforms the 3DVAR

experiment (red line) by substantial (and statistically

significant) margins (see one standard deviation boxes in

experiment differences shown by the black line near

zero in these graphics). The EnVAR hybrid experiment

has consistently smaller errors as evident in time series

and the vertical profiles of temperature, wind, and

moisture. Wind forecasts show the largest improvement

from the use of hybrid analysis, attributable to the in-

clusion of the ensemble-based BEC. The temperature

improvement is relatively smaller; however, the im-

provements are still significant for most levels. These

results indicate upper-air forecast error is reduced sig-

nificantly by using the hybrid analysis, even though the

same set of GFS ensembles are used for six continuous

RAP cycles. The results are consistent with the results

from other GSI-hybrid analysis experiments based on

TABLE 1. RAP GSI-hybrid analysis configurations for RAP version 2 and version 3 and options tested in experiments.

Options Values for RAP version 2 Values for RAP version 3

Options tested in

experiments

Static/ensemble BEC ratio 0.5/0.5 0.25/0.75 0.25/0.75, 0.0/1.0

Ensemble grid resolution 3 times coarser than analysis grid 3 times coarser than analysis grid Same as analysis grid

GFS ensemble update frequency Available four times per day Available four times per day Available hourly

Horizontal localization scale (km) 110 110 160, 220, 330

Vertical localization scale Three levels Three levels Nine levels

20.15 (;100 hPa)

FIG. 2. RAPpartial cycle structure.Atmospheric information fromGFS is introduced twice

daily at 0900 and 2100 UTC after 6-h parallel hourly spinup cycles in RAP during 0300–0800

and 1500–2000 UTC. The alternative RAP 1-h forecast between 0800 and 2000 UTC parallel

cycle (green arrow) is introduced for the background field at 0900 and 2100 UTC. Land

surface fields, by contrast, are fully cycled within the RAP through combining the GFS

forecast and RAP land surface fields at 0300 and 1500UTC (brown arrow) as the background

to start the parallel cycles.
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FIG. 3. (left) Upper-air RMSE profile and (right) time series for (a),(b) 6-h forecast wind (m s21); (c),(d) relative

humidity (%); and (e),(f) temperature [K in (e) and 8C in (f)] errors against sounding observations in 1000–100 hPa

for 28 May–5 Jun 2012 RAP experiments using RAP GSI ensemble–variational hybrid analysis (EnVar, blue line)

and the RAP GSI 3D-variational analysis (3DVAR, red line). Difference (EnVar 2 3DVAR) is plotted in black.

Boxes show 95% confidence (Weatherhead et al. 1998).
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the GFS (Wang et al. 2013; Kleist and Ide 2015a,b) and

NAM system (Wu et al. 2017). The positive results on

hybrid analysis drawn from those shorter-range retro-

spective experiments here were found to be consistent

with day-to-day time series results (Figs. 3b,d,f and

similar to James and Benjamin 2017), suggesting that

those results from shorter-range experiments are likely

representative of longer-period results.

The 3- and 6-h forecast RMSE for surface fields (10-m

wind, 2-m dewpoint, and 2-m temperature) are shown in

Fig. 4. The impact of EnVAR hybrid analysis on low-

level temperature, wind, and moisture is mostly neutral,

which may indicate small spread and lack of the local

weather details in the GDAS ensemble forecasts in the

low levels. The surface wind and dewpoint forecasts

show some minor improvement from the use of the hy-

brid analysis (Figs. 4a–d). Forecasts for 2-m temperature

show neutral impact from the hybrid analysis (Figs. 4e,f).

Similar neutral impact from the hybrid analysis is found

in ceiling and precipitation verification from these two

experiments (not shown). Overall, improved forecast

skill from use of the EnVAR hybrid assimilation is more

evident for upper-air fields and less so for near-surface

fields in this study.

To further understand the GSI-hybrid analysis experi-

ment results, the horizontally varying ensemble spreads of

zonalwind and temperature from the 6-hGDASensemble

forecast valid at 1200 UTC 1 June 2016 is shown in Fig. 5.

Spread is shown for both a middle level (RAP level 19,

near 500hPa) and a low level (RAP level 3, near 80m

above the surface) with NCEP surface analysis map. The

general pattern of the ensemble spreads are associated

with the three low pressure systems located, respectively,

near the northeastern United States, Hudson Bay, and

west of Vancouver Island. The temperature spread at the

lower level is smaller than that for the middle level

(Figs. 5b and 5c) but theU-component spread at the lower

level is larger (Figs. 5a and 5c). The spread fields are

smooth and reflect mainly large-scale weather patterns.

Further investigation of the GDAS ensemble with a rank

histogram using the surface observations shows the classic

U-shape distribution indicating the underdispersion of the

ensemble forecast (figure not shown).

A special set of theGDAS ensemble forecasts covering

this RAP retrospective period were rerun with hourly

(instead of 3-hourly) output and forecasts out to 12h. The

retrospective RAP EnVAR experiment was repeated

with 7- to 12-h GDAS ensemble forecast perturbations

valid at each hourly RAP analysis time. The new

EnVAR-hourly GFS experiment results are shown in

Fig. 6 (blue line). The EnVAR-hourly GFS experiment

has RMSE for upper air that is similar to the first EnVAR

experiment. Thus, the GSI EnVar hybrid experiment

using the 6-hourly ensemble forecasts (currently used in

operational RAP) is not further improved upon by more

frequent availability of the GDAS ensemble forecast.

The similar performance indicates that the GDAS en-

semble BEC likely represents forecast error structure

from larger-scale weather patterns (Fig. 5). Also, these

results indicate that variance and multivariable correla-

tions could be more important for RAP GSI-hybrid ap-

plications than the real-time flow dependence aspect of

the perturbations, which will be discussed in more detail

in section 5.

Applying GSI-hybrid assimilation in RAP greatly im-

proved the RAP upper-air forecast accuracy (e.g., Fig. 4),

but initially increased the wall-clock time used to run GSI

about 300%. To obtain better efficiency, RAPGSIEnVar

hybrid uses ensemble perturbations distributed on a

coarser grid that is an integer times the analysis grid space.

A retrospective experiment is conducted to investigate the

impact of the coarser ensemble grid. The previous EnVar

hybrid experiment (in Fig. 4) used an ensemble grid equal

to the analysis grid, approximately 13-km horizontal grid

spacing. The new comparison experiment set the ensem-

ble grid to 3 times the analysis grid, resulting in an en-

semble horizontal grid spacing of approximately 40km.

The upper-air RMSE profiles of 6-h forecasts for wind,

relative humidity, and temperature against sounding ob-

servations are shown in Fig. 7. The EnVar hybrid exper-

iment and the comparison experiment with coarser

ensemble data have similar error statistics. Thus, the GSI-

hybrid using the coarser ensemble grid data can produce

the same quality forecast as one using the ensemble per-

turbations on the analysis grid. This result is not surprising

because the grid spacing of the GDAS ensemble forecast

used in this experiment is approximately 60km. There-

fore, interpolation of theGDASdata directly to the 13-km

RAP analysis grid and to 3 times (40km) the RAP anal-

ysis grid, produces similar results in GSI.

To summarize this section, using the GSI EnVAR

hybrid data assimilation helps the RAP system by

leading to significant improvements in the RAP upper-

air forecast over the 3DVAR method. The use of the

6-hourly available GDAS/EnKF global ensemble on a

3-times coarser grid works equally well for the RAP

forecast. These experiments enabled the application of

the GSI EnVar hybrid for RAP version 2 to obtain

significant positive impact with essentially no additional

wall-time increase.

4. Sensitivity experiments for RAP data
assimilation

After the operational implementation of the GSI-

hybrid in RAP version 2, additional experiments were
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conducted to further investigate sensitivity in RAP to

hybrid assimilation parameters, such as the ratio be-

tween ensemble BEC and static BEC, horizontal local-

ization, and vertical localization.

a. Ratio between ensemble BEC and static BEC

Forecast skill improvement from applying hybrid

analysis with the ensemble BEC is thought to be through

FIG. 4. For the same period as in Fig. 3, surface RMSE time series for (left) 3- and (right) 6-h forecast for (a),

(b) 10-m wind (m s21); (c),(d) 2-m dewpoint (8C); and (e),(f) 2-m temperature (8C) errors against METAR ob-

servations between experiments using RAP GSI ensemble–variational hybrid analysis (EnVar, blue line) and the

RAP GSI 3D-variational analysis (3Dvar, red line). Difference (EnVar 2 3DVAR) is plotted in black.
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its provision of flow-dependent background error struc-

ture information through use of real-time ensemble

forecasts in the analysis. The combined weight of the

ensemble BEC and the static BEC in the GSI-hybrid

analysis is set to add up to 1.0 in the GSI version used for

this work. More weight given to the ensemble BEC

means that more ensemble-based information will be

included in the analysis. The RAP version 2 GSI-hybrid

assimilation used 50% ensemble BEC and 50% static

BEC. Two retrospective experiments (Table 1) were

conducted with the ensemble BEC weight increased to

75% (25% static BEC) and to 100% (no static BEC).

The impact of the ensemble BEC ratio is compared by

examining the upper-air RMSE profiles of 3- and 6-h

forecasts (Fig. 8).

When the fraction for ensemble BEC is increased

from 50% (red line) to 75% (blue line), 3-h wind fore-

cast skill is improved for all levels with most levels

showing significant improvement (Fig. 8a). The 6-h

forecast wind field also shows some improvement us-

ing increased ensemble BEC at most levels between 700

and 200 hPa (Fig. 8b). The larger improvement to the

FIG. 5. Ensemble spread of the GDAS EnKF ensemble 6-h

forecast initialized from 0600UTC 1 Jun 2012: (a)U component of

wind at level 19 (m s21), (b) temperature at level 19 (K), (c) U

component of wind at level 3 (m s21), and (d) temperature at

level 3 (K). (e) Surface analysis field at 1200 UTC 1 Jun 2012

from NCEP.
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FIG. 6. As in Figs. 3a,c,e, but for upper-air RMSE profile of (left) 3- and (right) 6-h forecast error for (a),(b) wind

(m s21); (c),(d) relative humidity (%); and (e),(f) temperature (K) against sounding observations in 1000–100 hPa

between RAP experiment using 6-hourly available GFS ensemble (EnVar, red line) and an experiment using

hourly available GFS ensemble (EnVar-hourly GFS, blue line). Difference (EnVar-hourly GFS 2 EnVar) is

plotted in black. Boxes show 95% confidence.
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3-h forecast compared to the 6-h forecast indicates that

the impact from using a larger BEC component from the

ensemble BEC fades with longer forecast lead times, as

the impact of the data assimilation also decreases with

the longer forecast lead times. The 75% of ensemble

BEC has a neutral impact on 3- and 6-h moisture and

temperature forecasts (Figs. 8c,e). Increasing the en-

semble BEC fraction to 100% (black lines) increases

forecast errors compared to the 75% ensemble BEC

experiment (blue lines) and the 50% ensemble BEC

experiment (red lines). For example, the 3-h tempera-

ture forecasts from the 100% ensemble BEC experi-

ment in some layers (e.g., 3-h forecasts below 950hPa

and above 400 hPa, 6-h forecasts below 850hPa and

above 500 hPa) show significant degradation compared

to the other two experiments (Figs. 8e,f). The 6-h rela-

tive humidity forecasts below 850hPa and between 650

and 200 hPa is also worse for the 100% ensemble BEC

experiment (Fig. 8d). The only improvement from the

100% ensemble BEC experiment is in the shorter-range

3-h wind forecast (Fig. 8a). Based on these results, a

weight of 75% for the ensemble BEC was chosen for

the GSI-hybrid assimilation for RAP version 3 im-

plemented at NCEP inAugust 2016. The static BEC still

has some positive effect in the GSI-hybrid analysis ap-

plication for RAP (Wu et al. 2017; Kleist and Ide 2015a).

b. Different horizontal and vertical localization scales

The RAP analysis uses many high-resolution observa-

tions and focuses on short-range mesoscale weather

forecasts. Consistent with that, the horizontal and vertical

localization scales used in the RAP GSI-hybrid are con-

siderably (5–10 times) smaller than those used in other

NCEP forecast systems using GSI-hybrid. To investigate

sensitivity to these localization scales, a series of retro-

spective experiments were conducted with different hor-

izontal and vertical localization scales (Table 1).

The effect of the horizontal localization value

(110 km) used in the operational RAP version 2 was

compared with the effect of using alternative larger

values of 160, 220, and 330 km (Fig. 9). The upper-air

RMSE profiles for 6- and 12-h forecasts of wind, relative

humidity, and temperature were examined. In the 6-h

forecast, the 110-km localization scale experiment has

slightly smaller RMSE for winds between 850 and

450 hPa (Fig. 9a) and for moisture between 650 and

400 hPa (Fig. 9c). Other levels of the wind and moisture

RMSE show little difference when different localization

scales are used. The 6-h temperature forecasts for all

horizontal localization scales generally produce the

same temperature RMSE (Fig. 9e). For the 12-h fore-

casts, the error differences between the four horizontal

localization scale experiments are even more subtle

FIG. 7. As in Figs. 3a,c,e, but for RAP retrospective runs using the

ensemble grid that is the same as the analysis grid (red line) and using

the ensemble grid that is 3 times coarser than the analysis grid (blue

line). Difference (3 times coarser grid 2 analysis grid) is plotted in

black. Boxes show 95% confidence.

4214 MONTHLY WEATHER REV IEW VOLUME 145



FIG. 8. As in Fig. 6, but for three RAP retrospective experiments with different BEC configurations. Exp 1 (red)

50% ensemble BEC and 50% static BEC (as in RAPv2). Exp 2 (blue) 75% ensemble BECwith 25% static BEC. Exp

3 (black) 100% ensemble BECwith no static BEC. Difference of Exp 22Exp 1 is shown in green. Difference of Exp

3 2 Exp 1 is shown in red in the vicinity of the zero vertical line. Boxes show 95% confidence.

OCTOBER 2017 HU ET AL . 4215



FIG. 9. As in Fig. 6, but for (left) 6- and (right) 12-h forecasts and for four RAP retrospective experiments with

different horizontal localization scales: Exp 1 (red) 110 km, Exp 2 (blue) 160 km, Exp 3 (green) 220 km, and Exp 4

(black) 330 km. Difference of Exp 2 2 Exp 1 is shown in red. Difference of Exp 3 2 Exp 1 is shown in black.

Difference of Exp 4 2 Exp 1 is shown in blue in the vicinity of the zero vertical line. Boxes show 95% confidence.
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(Figs. 9b,d,f). With the benefits of using a 110-km hori-

zontal localization scale for 6-h forecasts and virtually

no change in skill for 12-h forecasts, that value was re-

tained in the RAP version 3 (B16; Table 1).

There are two options to specify the vertical locali-

zation scale in GSI, using the number of levels or using

fixed vertical pressure depth, which represent Gaussian

half-width distances. The operational RAP version 2

used three levels as the vertical localization scale. Here,

RAP retrospective experiments using nine levels and

100hPa (both broader) as the vertical localization, re-

spectively, were conducted to compare with the RAP

version 2.

Figure 10 shows the comparison of upper-air RMSE

profiles of 0- and 6-h forecast fit to wind, relative hu-

midity, and temperature sounding observations between

experiments with vertical localization scale of three

levels (red lines) and nine levels (blue lines). Increasing

the number of levels for vertical localization, by defini-

tion, spreads the vertical impact of observations and

decreases the fit of the analysis (0-h forecast) to the

sounding observations (Figs. 10a,c,e). For 6-h forecasts,

skill using nine levels as the localization scale is worse

for low- and midlevel winds (Fig. 10b) and is slightly

worse for temperature and moisture (Figs. 10d and 10f).

Another experiment using 100hPa as the vertical lo-

calization scale has roughly similar results as the three-

level localization scale experiment. Using the vertical

localization method as defined by the number of vertical

levels is potentially more desirable because the depth of

model levels varies, with more levels in the atmospheric

layers with finer sigma-coordinate stratification (e.g.,

boundary layer; B16 see their Table 7). It can be argued

that observations in the regions of the atmosphere with

potential large vertical gradients (i.e., shallow boundary

layer) should have a narrower vertical impact than ob-

servations in other layers. Results from the vertical lo-

calization scales of three levels and 100hPa are shown in

Fig. 11 (similar to Fig. 10). The RMSE profiles for the

two experiments are similar in 0-h analyses and 6-h

forecasts except for low-level wind. The three-level

vertical localization, again not surprisingly, results in a

closer analysis fit to sounding observations for low-level

wind, moisture, and temperature. The difference is due

to the model levels being denser at low levels. For 6-h

forecasts, there is very little difference in skill between

these two experiments (Figs. 11b,d,f). The main goal of

the RAP data assimilation is to provide the initial field

that can make the best short-range forecast. At the same

time, it is also desirable to have the analysis fit to the

observations closer to reflect the current weather status

for situational awareness. Therefore, the vertical local-

ization scale of three levels has been retained in RAP

version 3. Overall, these horizontal and vertical locali-

zation experiments indicate that the RAP localization

values used since the initial implementation of the hy-

brid analysis are appropriate for that NWP system.

5. Evaluation of temporal matching for flow-
dependent contribution to RAP forecast skill

Applying the GSI-hybrid assimilation with GDAS

ensemble to the RAP substantially improves the fore-

casts of upper-air wind, moisture, and temperature, de-

spite theGDAS ensemble data only being available four

times per day (section 3). In the RAP configuration for

hourly analyses, GSI uses the latest GDAS ensemble

forecast with valid time closest to the analysis time. The

impact of using the off valid time GDAS ensemble

forecast in GSI-hybrid analysis was already investigated

and discussed in section 3 through comparing the EnVar

and EnVAR-hourly GFS experiments. The results in-

dicate there is no degradation toRAP forecast skill from

using 6-hourly available GDAS ensemble forecasts in-

stead of the hourly ensembles in GSI-hybrid analysis for

the RAP system. This result is understandable from the

fact that the GDAS ensemble is a coarser-resolution

global forecast to represent large-scale weather patterns

that do not change substantially within a 6-h period.

Still, a question remains on the sensitivity of RAP

GSI-hybrid analysis to time-matching the global en-

semble for the ensemble-based BEC component with

the RAP analysis time. In this section, we describe ex-

periments that exaggerate that time difference. A new

set of four retrospective experiments from 15 to 21 June

2014 was conducted based on the updated RAP version

3 configuration. The first retrospective run used theGSI-

3DVAR, and the second used the GSI-hybrid analysis

with the GDAS ensemble that has a valid time close to

the analysis time (time matching difference always less

than 6h). A third experiment used the GSI-hybrid

analysis with a fixed ensemble forecast (i.e., the same

set of GDAS ensemble forecasts valid near the time of

the first RAP cycle on 15 June 2014 was used for all

following hourly RAP cycles for the next 6 days through

21 June 2014). With the fixed ensemble forecast, the

flow-dependent component should fade away after

couple of days of cycling, and large-scale waves could

have larger phase errors compared to the real-time en-

sembles. The fourth experiment, most extreme, also

used the same hybrid assimilation but using global en-

semble data from 6 months later (December 2014).

The results from first three experiments described

above for flow-dependence study are shown in Figs. 12

and 13. Figure 12 shows upper-air RMSE profiles and

Fig. 13 shows RMSE time series of 3- and 6-h forecast
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FIG. 10. Upper-air RMSE profiles of (left) 0- and (right) 6-h forecasts for (a),(b) wind (m s21); (c),(d) relative

humidity (%); and (e),(f) temperature (K) against sounding observations in 1000–100 hPa. TwoRAP retrospective

experiments test the impact of vertical localization scales: three levels (red line) and nine levels (blue line). Dif-

ference (nine levels 2 three levels) is plotted in black. Boxes show 95% confidence.
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FIG. 11. Upper-air RMSE profiles of (left) 0- and (right) 6-h forecasts for (a),(b) wind (m s21); (c),(d) relative

humidity (%); and (e),(f) temperature (K) against sounding observations in 1000–100 hPa. TwoRAP retrospective

experiments test the impact of vertical localization scales: three levels (red line) and fixed length option 20.15,

which is about 100 hPa (blue line). Difference (fixed length option20.152 3 levels) is plotted in black. Boxes show

95% confidence.
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FIG. 12. Upper-air RMSE profiles of (left) 3- and (right) 6-h forecast errors for (a),(b) wind (m s21); (c),(d) relative

humidity (%); and (e),(f) temperature (K) against sounding observations in 1000–100 hPa. Three RAP retrospective

experiments running from15 to 21 Jun 2014were conducted to investigate the contribution from the flow dependence

of the ensemble BEC: RAP using GSI 3DVAR (red line), RAP GSI-hybrid analysis using correct GFS ensemble

forecast (blue line), andRAPGSI-hybrid analysis using fixedGFS ensemble forecast valid at the beginning of the test

period (black line). Difference of hybrid analysis using corrected GDAS ensemble minus 3DVAR is plotted in green

close to 0 and difference of hybrid analysis using fixed GDAS ensemble minus 3DVAR is plotted in red close to 0.

Boxes show 95% confidence.
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errors for wind, relative humidity, and temperature

against sounding observations. In Fig. 12, the RMSEs

from two experiments using the hybrid analysis (blue

and black lines) are close to each other but both are

significantly smaller than those from experiment using

3DVAR (red lines). In other words, the hybrid EnVar

analysis in RAPv3 continued to produce improved

short-range forecasts over the 3DVAR with fixed BEC,

the same results as in experiments with RAPv2 (Fig. 3).

As in the experiments in section 3, the most significant

improvements from a hybrid analysis are in the wind

forecasts, followed by moisture and then temperature.

Profiles from the two hybrid experiments indicate that

the hybrid analysis with the correct ensemble (blue

lines) valid close to the analysis time does give slightly

smaller RMSE. The extra improvement from using the

FIG. 13. The same experiments as in Fig. 12, but for upper-air RMSE time series of (left) 3- and (right) 6-h forecasts for

(a),(b) wind; (c),(d) relative humidity; and (e),(f) temperature against sounding observations in 1000–100 hPa.
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correct (or real-time flow dependent) ensemble is most

clear in wind and moisture forecasts from 900 to 200 hPa

in both 3- and 6-h forecast (Figs. 12a–d) and very small

for temperature forecasts (Figs. 12e,f) at most levels.

Also, the hybrid experiment with the correct ensemble

gives smaller RMSE for temperature forecasts near the

surface. This may come from the fact that the near-

surface moisture and temperature could change a lot

with different weather patterns (e.g., with/without

cloud/precipitation).

The time evolution of the RMSE (Fig. 13) for these

experiments with different degrees of ensemble-analysis

time-matching supports the profile results shown in

Fig. 12. Consistent in time, the RMSE from the two ex-

periments with hybrid analysis (blue and black lines) are

close to each other and both are smaller than ones from

3DVAR (red lines). The experiment with the correct

ensemble (blue line) has slightly smaller RMSE at most

times compared to the experiment with the fixed-in-time

ensemble (black line). The benefit of the flow-dependent

information can be seen in wind forecast skill as the

time offset between the fixed ensemble forecast valid

time (15 June) and the analysis time becomes longer

(Figs. 13a,b). The 6-h wind forecast RMSEs from the

two hybrid experiments on 15 and 16 June are almost

identical and then grow further apart after 17 June. The

moisture and temperature forecasts from using the

fixed-in-time ensemble (at 15 June) are slightly de-

graded compared to results from use of the real-time

ensemble forecast for assimilation (Figs. 13c–f).

It is somewhat surprising that the RAP GSI-hybrid

analysis is not highly sensitive to the valid time of the

global ensemble, and the experiment with an ensemble

valid close to the analysis time gives only a slightly better

forecast compared to the experiment with fixed-in-time

ensemble. Both hybrid experiments are able to produce

more accurate short-range forecasts than the 3DVAR

experiment. Quantitatively, the difference between the

RMSE profiles in Fig. 12 and the time series in Fig. 13

show that using the fixed ensemble can provide about

80% of the improvement that the experiment with the

correct ensemble can give over 3DVAR, at least over

this 6-day test period. These results suggest that theGFS

ensemble BEC provides a time-invariant benefit to help

improve the forecast for the large-scale weather system.

To further improve the forecast to local- and storm-scale

system, high-resolution ensemble forecast from

RAP ensemble or high-resolution global ensemble

are needed to provide enough details in ensemble

spread space on those local and storm systems.

To further investigate this topic, a fourth RAP retro-

spective experiment was conducted using GSI-hybrid

analysis with a GDAS ensemble from a completely

different season than the test period. We assume that this

off-season (6 months later) GFS ensemble represents a

totally different weather pattern from the retrospective

period, and includes little or no time- and flow-dependent

information. The results from the new experiment (green

lines)were plotted in Fig. 14with the results from the other

three experiments. RMSE profiles from the new off-

season-ensemble experiment (green lines) mostly overlay

with the profile from the fixed ensemble experiment (black

lines). This confirms that the slight improvement from the

correct ensemble experiment is from the real-time flow-

dependent information in the real-time ensemble that is

valid close to the analysis time.

The RAP static BEC was calculated using the NMC

method based on perturbations from a year-long period

and it reflects long-term average features of the model

error covariance.When an ensemble is used inGSI-hybrid

analysis, the distribution of analysis increment, ratio of

analysis fitting to the observation, and the balance among

different analysis fields are mainly calculated based on the

ensemble perturbations, which reflect the status of the

background error covariance more accurately than static

BEC in term of the weather pattern and dynamical and

thermodynamic relations among difference variables. The

clear improvements from hybrid assimilation with both

fixed and off-season global ensemble perturbations in-

dicate that balances including cross-variable covariances

from those ensembles are still much better than those from

the static BEC. Further, the portion of the weather pattern

with strong flow-dependent features, like fronts and jets,

only exist in limited areas of the large RAP domain at any

given time. Thus, most of the domain has atmospheric

conditions in which balances among different analysis

variables can be represented well by a GDAS-based en-

semble from any time.

These GSI-hybrid analysis experiments provide in-

sights on the setup for the RAP system: we can dismiss

the requirement that the ensemble forecast must be

valid within 6h of the analysis time. Still the RAP should

try to use the ensemble BEC valid as close to the analysis

time as possible.

6. Summary and discussion

Since the Rapid Refresh became operational at NCEP

in 2012, it has played an important role in decision-making

related to severe weather, aviation, and renewable energy

(Wilczak et al. 2015). The data assimilation component of

the RAP, GSI, has been developed, refined, and tested to

better benefit these important forecast applications.

GSI has been developed for many years by NCEP in

collaboration with other institutions, including the Global

Systems Division (GSD), for operations and community
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research. It now includes useful well-developed functions

for data assimilation, such as forward model operators for

many types of observations, detailed quality control, ef-

fective parallel computation, flexible data usage control,

treatment for cloud/hydrometeors, etc. Dual-resolution

ensemble-variational hybrid analysis is one of those func-

tions, successfully applied in the RAP system for the RAP

version 2 upgrade. This article introduces the testing,

evaluation, and parameter sensitivity for GSI ensemble–

variational hybrid analysis for RAP operations.

FIG. 14. As in Fig. 12 (June 2014 period), but with one additional experiment for hybrid assimilation using off-

season ensemble from December 2014 (green line). Boxes show 95% confidence.
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Because of the latency and 6-h cycling of the real-time

GDAS/EnKF ensemble, hourly cycling assimilation in

the RAP can only use the global ensemble forecasts valid

close to the desired analysis time instead of exactly

matching the analysis time for most of its cycles. In RAP

operations, the GSI analysis in six continuous cycles uses

the same GDAS/EnKF ensemble for the hybrid analysis.

The tests of GSI-hybrid assimilation versus the

3DVAR shows that the use of hybrid assimilation with

GDAS/EnKF ensemble data valid close to the analysis

can significantly improve upper-air forecasts from the

RAP system, but the impact on surface, ceiling, and

precipitation forecasts appear to be neutral. The same

conclusions can be drawn from two other one-week

RAP retrospective experiments that compared hybrid

analysis versus 3DVAR analysis in difference season

(results not shown in this paper). Comparing the RAP

version 2 hybrid configuration with 6-hourly GFS en-

semble data versus an experiment with hourly GFS en-

semble data valid exactly at analysis time indicates that

application of GFS ensemble data valid at each hourly

time does not improve RAP forecast skill. A similar

result is found in another sensitivity test: results using

ensemble grid data at 3 times coarser resolution

(cheaper computationally) than data on the analysis grid

show no difference in accuracy. These results indicate

that while the GDAS/EnKF ensemble reflects primarily

large-scale weather pattern forecast error covariance, its

application in the regional RAP GSI-hybrid analysis is

very effective for regional short-range forecast accuracy.

RAP retrospective experiments were conducted for

additional sensitivity tests for different ratios of en-

semble and static BEC, and for different values for

horizontal and vertical localization scales to determine

the best GSI-hybrid configuration for RAP system. The

results show the original horizontal and vertical locali-

zation values used in RAP assimilation are appropriate

for RAP forecast skill. In the RAP version 3 upgrade in

August 2016, the fraction of ensemble BEC was in-

creased from 50% to 75% (based on results described

here), and the horizontal and vertical localization scales

were kept at 110 km and three levels.

Generally, improvements from hybrid data assimila-

tion are attributed to the real-time flow-dependent in-

formation brought in through the ensemble BEC.

However, our tests with GSI-hybrid using a fixed en-

semble or even from an ensemble valid 6 months later

suggest that the use of any available GDAS/EnKF

global ensemble BEC can help to improve RAP analysis

and forecast skill over using the static BEC only. This

result indicates that the impacts of regional GSI-hybrid

analysis are not sensitive to the valid time of the global

ensemble used, and the time-independent components

of the cross-variable covariances (but not necessarily

the time-dependent flow-dependent component) in the

ensemble-based BEC are better than those from the

NMC method. This result is helpful in understanding

the practical implications of the GSI-hybrid technique.

For example, the RAP should always use the hybrid

ensemble–variational hybrid option within GSI, even if

the GDAS/EnKF ensemble forecast may be older than

6h from analysis time. Also, if no real-time ensemble

data are available for a user (including in the research

community), GSI-hybrid assimilation can still be ap-

plied with a global ensemble forecast to obtain the

benefit of hybrid assimilation. Another application of

this result is to generate a new static BEC based on

perturbations collected from global ensemble forecast

instead of the NMCmethod. The new static BEC should

have better multiple-variate balance and further im-

prove the GSI-hybrid analysis in RAP.

The range of the hybrid localization and hybrid weight

tested in this study is limited. Most of the results in this

study were from one-week long experiments, which are

relatively short, but found to be consistent on a day-to-

day basis. Those values should be used as initial refer-

ence for high-resolution short-range data assimilation

systems and users are suggested to conduct their own

experiments to find the best values for their application.

Improved short-range forecast performance from the

RAP demonstrated here with the hybrid ensemble-

variational analysis capability in GSI improves decision-

making for many safety- and economic-related activities.

In the future, GSI-hybrid analysis studies will be con-

ducted with higher-resolution regional ensemble fore-

casts instead of global ensemble forecasts in an attempt

to improve the surface, cloud, and precipitation fore-

casts. TheGSI is a product ofmany years of development

and cooperation from its combined operational and re-

search NWP community.
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